Stock Price Prediction Using K-Nearest Neighbor (kNN) Algorithm

نویسندگان

  • Khalid Alkhatib
  • Hassan Najadat
  • Ismail Hmeidi
  • Mohammed K. Ali Shatnawi
چکیده

Stock prices prediction is interesting and challenging research topic. Developed countries' economies are measured according to their power economy. Currently, stock markets are considered to be an illustrious trading field because in many cases it gives easy profits with low risk rate of return. Stock market with its huge and dynamic information sources is considered as a suitable environment for data mining and business researchers. In this paper, we applied k-nearest neighbor algorithm and non-linear regression approach in order to predict stock prices for a sample of six major companies listed on the Jordanian stock exchange to assist investors, management, decision makers, and users in making correct and informed investments decisions. According to the results, the kNN algorithm is robust with small error ratio; consequently the results were rational and also reasonable. In addition, depending on the actual stock prices data; the prediction results were close and almost parallel to actual stock prices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

A Novel Continuous KNN Prediction Algorithm to Improve Manufacturing Policies in a VMI Supply Chain

This paper examines and compares various manufacturing policies which manufacturer may adopt so as to improve the performance of a vendor managed inventory (VMI) partnership. The goal is to maximize the combined cumulative profit of supply chain while minimizing relevant inventory management costs. The supply chain is a two-level system with a single manufacturer and single retailer at each lev...

متن کامل

Efficient k-nearest neighbor searches for multi-source forest attribute mapping

In this study, we explore the utility of data structures that facilitate efficient nearest neighbor searches for application in multi-source forest attribute prediction. Our trials suggest that the kd-tree in combination with exact search algorithms can greatly reduce nearest neighbor search time. Further, given our trial data, we found that enormous gain in search time efficiency, afforded by ...

متن کامل

Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm

Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013